• Document: Arduino Lab 05 Leitura e
  • Size: 1.18 MB
  • Uploaded: 2019-02-13 16:50:12
  • Status: Successfully converted


Some snippets from your converted document:

Arduino Lab 05 – Leitura e transmissão remota de corrente utilizando o nRF24L01 Imagem geral Aplicação Neste Lab iremos descrever a integração entre 5 dispositivos em uma aplicação de transmissão de dados de medição de corrente elétrica de um equipamento remoto para um Server via wireless utilizando o transceiver nRF24L01. Os dispositivos a serem utilizados para esta aplicação são: Arduino Nano, Arduino Uno, transceiver nRF24L01, RTC MCP9700 conversor de nível de tensão e um display de TFT ILI9163C. Imagem dispositivos Sensor de Corrente TA12-100 Sensores de corrente não invasivos apresentam a vantagem de não ser necessário interromper o circuito para realizar a medição da corrente que passa pelo condutor. Eles são acoplados externamente e capturam os valores de corrente através do campo magnético gerado. Imagem Sensor de Corrente No nosso caso, estamos utilizando o sensor modelo TA12-100 produzido pela empresa YHDC que pode medir correntes de até 5A AC. As principais características deste sensor estão indicadas na tabela abaixo. Especificações Sensor de Corrente Estes sensores também são conhecidos como transformadores de corrente pois trabalham com o princípio do acoplamento do campo magnético gerado pela corrente que passa pelo condutor ao enrolamento do sensor. O número de enrolamentos dentro do sensor exerce a função de “amplificar” o campo magnético captado. Neste sensor, a cada 5A que circula pelo condutor principal teremos 5mA na saída da bobina do sensor. É necessário um resistor de carga para que os valores de corrente gerados na saída do sensor sejam convertidos em tensão na proporção ideal à entrada do conversor AD do microcontrolador. Um resistor de precisão de 200Ω é utilizado. O diagrama simplificado do sensor é ilustrado abaixo. Esquema Sensor de corrente Teste do sensor de corrente Um programa que interpreta os dados da leitura dos valores de corrente é indicado abaixo. Uma sequência importante deve ser obedecida para que os valores sejam interpretados de forma correta. Medir o pico de tensão no resistor de 200Ω ligado na saída do sensor; Converter a tensão em cima do resistor em valores de corrente através da lei de Ohm (I = E/R); Multiplicar o pico de tensão por ou 0,707 para termos valores em RMS (0,707 é aplicado somente a ondas senoidais puras); Multiplica o valor RMS da corrente por 1000 para melhor visualização do valor já que a relação é de 100 para 1. [crayon-5b5ace7416434773416274/] Transceiver nRF24L01 O módulo de RF a ser trabalhado neste Lab apresenta o transceiver (dispositivo que envia e recebe dados) nRF24L01 da empresa Nordic. Ele é um chip que trabalha na frequência de 2.4GHz com uma tecnologia de banda base chamada ShockBurst desenvolvida para aplicações de baixo consumo. Chip nRF24L01 A operação na faixa de frequência denominada ISM (Industrial, Scientific & Medical), mundialmente reservada na banda de 2.400 a 24835 GHz, permite que estes dispositivos não necessitem de licença da Anatel para operar desde que a potência irradiada seja menor do que 1W. A comunicação com o nRF, para acesso ao mapa de registradores e envio dos dados a serem transmitidos, é feita através do protocolo de comunicação serial SPI. O rádio do nRF utiliza a modulação GFSK (Gaussian Frequency Shift keying) para enviar e receber os dados pelo canal de comunicação através do ar. O módulo também pode trabalhar com uma taxa de transferência de até 2Mbps e com dois modos de economia de energia aliados a reguladores internos de tensão que tornam este dispositivo ainda melhor para aplicações ULP (Ultra Low Power). Faremos o uso de um módulo já pronto, com todos os capacitores, resistores e antena já prontos para operar. O mesmo é ilustrado na figura abaixo. Módulo nRF24L01 Esquema de ligação e teste Uma tabela com a descrição das conexões entre o nRF e o Arduino é indicada abaixo. Os outros componentes que compõem a ideia desse protótipo foram tratados no Lab04 anteriormente. Tabela conexão entre Arduino e nRF O diagrama de ligação nas duas condições (Transmissor e receptor) está indicado logo abaixo. Uma atenção especial deve ser dada a tensão de alimentação do transmissor que é de 3V3 apesar de as entradas de dados serem tolerantes a 5V o que facilita a conexão com microcontroladores de diversos tipos. Diagrama de ligação Lado do Receptor Diagrama de ligação Lado do Transmissor Algoritmo O algoritmo deste protótipo abrange a integração de todos os dispositivos, o que o torna um pouco mais complicado que os anteriores. No lado do transmissor, os valores da conversão provindos do AD do Arduino são armazenados em um buffer de duas posições sendo que cada posiç

Recently converted files (publicly available):